
Polar App Is Best In

ORFlat Design Skeumorphic

Mobile &
Multi-Device

Design 
Lessons Learned Building Polar

Luke Wroblewski

Introduction

i

Creating products is a journey. And like any journey, it’s
filled with new experiences, missteps, and perhaps most
importantly, opportunities to learn. My most recent
product journey started nearly two years ago when we
began working on Polar.

Polar started with the simple idea that everyone has an
opinion worth hearing. But the tools that existed online to
meet this need weren’t up to the task: think Web forms,
radio buttons, and worse. Ugh. We felt we could do much
better by making opinions easy and fun for everyone.

Along the way we learned a lot and, as time permitted,
shared some of our thinking, our failures, and our
successes. This book compiles the articles I published
over the past two years about Polar’s mobile and multi-
device design. It’s our hope that some of our experiences
help you with the product journey you’re on.

Safe Travels, 
Luke Wroblewski and The Polar Team

 

Mobile Design Details

The small screen real estate of mobile devices,
often has designers and marketers pining for
the branding opportunities that large screens
enable. But there's actually lots of interesting
ways to reinforce a brand on smaller screens as
well. As this touch gesture example illustrates.

It's becoming quite common to find "pull to refresh"
features on touch-based mobile devices. That is, to load
new content, you simply need to drag a list down with
your finger to trigger a refresh action.

As you do, not only does the content in the list update but
a lot of new screen space gets revealed that was
previously off screen. Screen space that often goes
unused. But it could be used to reinforce a visual identity
or brand, which is what we did with the pull to refresh
feature on the Polar app.

Mobile Design Details

Pull To Refresh

2

https://www.youtube.com/watch?v=m6qU4bLN2q4
https://www.youtube.com/watch?v=m6qU4bLN2q4

As you pull down to refresh a list in the app, a bit of
artwork is revealed. If you keep pulling, more and
more of the art is made visible until you see the

complete picture. 

This little feature does a few interesting things for us:

1. It's another touchpoint for our visual identity,
which is chock full of bears. Polar. Polls. Polar
Bears. Polar Opposites. Get it? 

2. It provides a reason for people to discuss what
Jared Spool calls "socially transmitted
functionality". That is features other people tell
you about. There is no visual affordance for the
pull to refresh action in the app. You either try it
and see it works or someone tells you about. The

little visual treat gets more people talking.  

3. To keep the focus on lists of content, we keep
our filtering actions & tabs (in this case the
popular and toggle) off screen. Creating some
fun in the pull to refresh action gets people using
it more and, as a consequence, discovering these
off screen features.

3

Video: Pull To Refresh

So far this little detail has been helping us realize the
benefits listed. But there's more we could do like adding
animation or switching between multiple images (or hiding
bears in the landscape version of this book... hint, hint.)

4

On mobile devices, there simply isn't room
for a lot of user interface elements – even
when they're useful. But while there may
not be enough space to include everything
up front, we can reveal relevant features
only when they are needed. In other words,
we can surface them just in time.

You can find an example of a just in time feature in
Polar, our latest iOS app. Polar features a create screen
that allows people to edit a number of text areas.
When they do the virtual keyboard comes up and,
unfortunately, partially covers people's work.

Mobile Design Details

Just In Time Actions

5

We heard frequently from people that they wanted to
hide the keyboard in order to fully see the results of
their work. This, of course, could be accomplished by
tapping "Done" on the keyboard but that wasn't what
many people did. Our first response was to educate
people on the "swipe down" gesture that closed the
keyboard by pushing it down. Our second was to make
a number of the elements visible on screen (but not
editable) dismiss the keyboard when tapped.

The problem with both of these solutions was the
same: they were effectively invisible. People didn't
know they were possible until they actually tried them
out. While this worked for some people, we still didn't
have a solution for everyone until we made use of a
just in time action.

In the current app design, when someone decides to
edit a text field and the keyboard comes up, we
replace their profile photo with a "down keyboard"
action that slides up with the keyboard (the subtle
animation brings just a bit of attention to the feature).
When the keyboard is dismissed by this action (or any
other means), the "down keyboard" action slides down
and the profile picture is revealed again.

6

This dismiss keyboard function is a just in time
interaction. There when you need it, gone (and saving
you screen space) when you don't. It also helps
communicate otherwise invisible (often gesture-only)
functionality.

There's a number of other places in the app where we've
applied this technique to reveal "hidden" functions when
they are needed. And since it's been quite effective,
we're likely to find more...

7

Passwords on the Web have long been
riddled with usability issues. From overly
complex security requirements to difficult to
use input fields, passwords frequently result
in frustrated customers and lost business. The
situation is even worse on mobile where small
screens and imprecise fingers are the norm.
But what can we do?

Once again, the constraints and capabilities of mobile
devices challenge us to to rethink long-standing design
standards. In this case, the password input field. You’re
all intimately familiar with this interaction because the
average person logs at least 15 times a day and 86% of
companies in the United States use password

Mobile Design Details

Hide / Show Passwords

8

http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://kottke.org/12/06/the-worlds-worst-password-requirements-list
http://kottke.org/12/06/the-worlds-worst-password-requirements-list
http://www.lukew.com/ff/entry.asp?933
http://www.lukew.com/ff/entry.asp?933
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487

authentication for their services. But just in case,
here’s how a typical password field works: you enter a
character, it displays a “secure” response in the form
of a •.

What’s wrong with that, you may ask? Very simply
put, there’s no way for you to check your work by
seeing what you entered. Which turns out to be very
useful when you’re forced to use a minimum amount
of characters, some punctuation, and the birthdate of
at least one French king for your password. So people
often submit incorrect passwords and head into
downward usability spirals.

Around 82% of people have forgotten their
passwords. Password recovery is the number one
request to Intranet help desks and if people attempt
to recover a password while checking out on a e-
commerce site, 75% won’t complete their purchase.

As usability advocate Jakob Nielsen puts it: 

“Masking passwords doesn't even
increase security, but it does cost you
business due to login failures.” ...and
it's worse on mobile.”  
 – Nielsen Norman Group 

Some mobile operating systems have recognized that
imprecise fingers and small screens make it even
harder to accurately input complex characters into a
password field. So they’ve made a small adjustment to
the way password fields work: they show you the
character you’ve entered for a brief moment before
replacing it with the standard “secure” •.

9

http://kottke.org/12/06/the-worlds-worst-password-requirements-list
http://kottke.org/12/06/the-worlds-worst-password-requirements-list
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.lukew.com/ff/entry.asp?1487
http://www.uie.com/articles/three_hund_million_button/
http://www.uie.com/articles/three_hund_million_button/
http://www.nngroup.com/reports/intranet/portals/
http://www.nngroup.com/reports/intranet/portals/

But since many of us look at our touch keyboards
while typing, when we do look up at the the character
we entered, its no longer visible and inconveniently
replaced by a •.

Recognizing this well-intentioned change isn’t enough
to fully counter password usability issues, some
companies take the extra effort to provide a “Show
Password” action. When activated, this action displays
the contents of a password field in readable text but
still sends it to a server securely.

This solution gives people the option of making their
password visible and thereby readable but by default
it appears as a string of ••••. Since most people stick
with default choices, it may make sense to instead
make the password visible by default but easily hidden
if necessary. This is how we implemented things in our
newest app, Polar.

10

http://www.lukew.com/ff/entry.asp?419
http://www.lukew.com/ff/entry.asp?419
http://www.lukew.com/ff/entry.asp?419
http://www.lukew.com/ff/entry.asp?419

By default Polar displays your password on our Log In
screen as readable text. A simple, Hide action is
present right next to the password field so in situations
where you might need to, you can switch the
password to a string of •••• instantly.

Wait... what? You’re displaying people’s passwords by
default? Simply put, yes. We decided to optimize for
usability and ease of log in over questionable security
increases. On a touchscreen phone, its trivial to move
the device out of sight of prying eyes. Or easier still to
simply hit the Hide action to obscure a password.

But not that it matters, there’s a visible touch
keyboard directly below the input field that highlights
each key as you press it. These bits of feedback show
the characters in a password at a larger size than most
input fields. So in reality, the •••• characters aren’t
really hiding a password from prying eyes anyway. As
a result, we opted for usability improvements instead.

We also try to keep people logged in as much as
possible by not displaying Sign Out actions front and
center in the application. This makes entering
passwords a rare occurrence and therefore less of an
issue for the people using our app.

11

People use their smartphones anywhere
and everywhere they can, which often
means distracted situations that require
one-handed use and short bits of partial
concentration. Effective mobile designs not
only account for these one thumb/one

eyeball experiences but aim to optimize for
them as well.

It's no secret smartphones get around: at home,
throughout the day, at work, while watching TV, during
commutes, and beyond. 39% of smartphone users even
admit to being on their mobiles in the bathroom, which
means the other 61% are liars. But whether we admit it
or not, mobile experiences do happen everywhere. And
that often includes distractions.

Whether you're on a crowded street corner or on the
couch watching TV, chances are you're giving your
phone just some of your attention. It's also quite likely
that attention doesn't last long. The average person
looks at their phone 150 times a day. Most of these are
brief interactions lasting a few minutes at best.

Mobile Design Details

Testing One Thumb / Eyeball

12

Video: Testing One-Handed Use Of The Polar App

Designing for this reality of mobile use requires a
laser-like focus on speed and simplicity. But how do
you know if you're hitting the mark with a design?
Timed, one-handed tests are one way to tell. When
designing our new app Polar for Apple's iOS, we did
just that.

The core tasks in Polar are voting on and creating
photos polls. So these are the interactions we timed
and tested with one-handed use. Our goal was to
allow anyone to vote on 10 polls or to create a new
poll in under sixty seconds using only one thumb. As
you can see in the video above, we were able to do
just that. In fact, we're often closer to the thirty
second mark.

A first time user may take more time as there's usually
some context they need to absorb but once someone
goes through the flow once or twice, we found under
sixty seconds to be easily achievable. Interesting side
note: the use of voice input to create a poll wasn't
much faster than one-thumb typing in our tests (also

seen in the video above). 

"What we need to do to design is to
look at the extremes. The middle will
take care of itself."  
 -Dan Formosa

 
Clearly there's more to testing and optimizing mobile
interaction designs than timed, one-handed tests. But
personally I consider this form of observation to be a
great litmus test. If people can get things done in time
sensitive, limited dexterity situations, they'll be even
more efficient when we have their full attention and
two-hands focused on our designs.

13

http://www.lukew.com/ff/entry.asp?788
http://www.lukew.com/ff/entry.asp?788

There’s no shortage of discussion about the
value of consistency in interface design. But
ensuring things are consistent isn’t the goal.
Presenting people with predictable and
familiar interactions is. One way to get there
is by echoing your primary interaction design
throughout a product.

Echoing occurs when a specific interaction design is
reused in various but appropriate contexts across a
product experience. Since the same interaction model is
reused, people can learn it in one place and apply their
knowledge elsewhere. We used echoing a lot in our new
mobile application, Polar. Let’s see it in action.

Mobile Design Details

Echoing Core Interactions

14

The core interaction in Polar is voting on polls that
feature two options presented in a blue banner
separated by the word OR. When someone opens the
app for the first time, they are presented with a list of
these polls and can start voting right away by tapping
on the left or right side of the banner or images below
it. When they do, they’ve learned the core interaction
we echo across the app.

If someone wants to make a poll of their own, they’re
presented with our Login/Join screen. This design
echoes the core interaction of voting by presenting the
Login and Join choices as a set of two options in a
blue banner separated by the word OR – just like
voting on polls.

15

In the highly unfortunate situation where someone’s
poll fails to upload (we take lots of precautions to
prevent this), their options to Give Up or Try Again
will be presented in a blue banner separated by the
word OR – just like voting on polls.

At this point you get the idea. Echoing can not only
reinforce a core interaction across an experience, it
can also unify the design of a product through familiar
visual design elements and ideally make mundane
interaction like Login, fun.

16

It’s hard to get people to download your
mobile application. But if they do, what greets
them when they open it up for the first time?
A step by step tour? A sign up form? Both
might be missed opportunities to get people
engaged and interested in your service. In fact,
you might want to consider a gradual
engagement approach instead. Here’s why...

Mobile App Realities 
Before diving into gradual engagement, let’s look at the
realities of mobile app usage. In 2011, the average
smartphone user downloaded about 2.5 new mobile apps
a month. iOS users were on the high end with about 5
apps downloaded per month. Even if these numbers have
gone up over the past year, that’s still not a lot of
opportunity to get downloaded.

Mobile Design Details

Mobile Sign Up Forms
Must Die

17

http://www.lukew.com/ff/entry.asp?1130
http://www.lukew.com/ff/entry.asp?1130
http://www.lukew.com/ff/entry.asp?1130
http://www.lukew.com/ff/entry.asp?1130
http://www.lukew.com/ff/entry.asp?1447
http://www.lukew.com/ff/entry.asp?1447
http://www.lukew.com/ff/entry.asp?1447
http://www.lukew.com/ff/entry.asp?1447
http://www.mobilephonedevelopment.com/archives/1233
http://www.mobilephonedevelopment.com/archives/1233
http://www.asymco.com/2011/01/18/ios-users-download-about-5-apps-every-month/
http://www.asymco.com/2011/01/18/ios-users-download-about-5-apps-every-month/
http://www.asymco.com/2011/01/18/ios-users-download-about-5-apps-every-month/
http://www.asymco.com/2011/01/18/ios-users-download-about-5-apps-every-month/

If you do get a download, chances are most people
won’t stick around. One study found that 26% of all
apps downloaded were opened only once and then
never used again. Only 26% were used 11 times or
more. Of the remaining 48% of apps: 13% are
opened only twice, 9% are opened only three times,
and so on.

Of course, there are lots of reasons why people
don’t use apps on an ongoing basis but your sign-up
process shouldn’t be one of them. After all the hard
work to get a download, losing new users at sign-up
is a significant opportunity lost.

How significant? One very large scale app saw only
25% completion of their sign-up process. Vibhu
Norby, the co-founder of Everyme wrote in detail
how his app (at best) “retained 5% of users through
their entire onboarding process”. In other words,
expect a lot of drop-off.

Gradual Engagement 
Gradual engagement is the process of moving a user
through an application or service – actually engaging
with it, and seeing its benefits. With gradual
engagement, new users are not just presented with a
registration form and then dropped off a cliff. Instead,
registration is either postponed, or handled behind
the scenes and the first time experience is focused on
giving people an understanding of how they can use
a service and why they should care to.

This is the approach we took with our mobile app,
Polar. Polar is all about sharing and collecting
opinions. So out the gates, that’s what we allow
anyone opening the app for the first time to do: vote
instantly on the polls they see. 87% of people who
download the app do.

Here’s how it works. When a new or logged out user
opens Polar, they are presented with a list of polls to
vote on. We hold on to all their votes so if they ever
create a username and profile page, all their votes will
carry over.

18

http://edition.cnn.com/2011/TECH/mobile/03/21/app.engagement.gahran/
http://edition.cnn.com/2011/TECH/mobile/03/21/app.engagement.gahran/
http://philosophically.com/why-were-pivoting-from-mobile-first-to-web-first
http://philosophically.com/why-were-pivoting-from-mobile-first-to-web-first

Commenting or creating a poll requires an account
and the dreaded sign-up form. But we’ve made a lot
of design decisions to make that process as fast and
painless as possible. Massimo Pascotto recently
wrote an article about the design of our sign-up
screen if you’re interested in more.

Results  
With gradual engagement we can communicate what
our mobile apps do and why people should care by
actually allowing people to interact with them right
away. We can capitalize on all the hard work it takes
to get a download instead of turning 75% of our
potential audience away with sign-up requirements.

85% of the over 3.5 million votes on Polar have from
signed-in users. But another 15% came from people
voting without an account. And we’re happy to give
them a voice as well. No sign-up form required.

19

https://www.evernote.com/shard/s129/sh/b2613e45-c7bd-460f-9ca3-0cc635bc0e69/d6ee8dfd5db88bc25166600fa3834886
https://www.evernote.com/shard/s129/sh/b2613e45-c7bd-460f-9ca3-0cc635bc0e69/d6ee8dfd5db88bc25166600fa3834886
https://www.evernote.com/shard/s129/sh/b2613e45-c7bd-460f-9ca3-0cc635bc0e69/d6ee8dfd5db88bc25166600fa3834886
https://www.evernote.com/shard/s129/sh/b2613e45-c7bd-460f-9ca3-0cc635bc0e69/d6ee8dfd5db88bc25166600fa3834886

The situation on mobile is dire. People expect
a faster experience on mobile then they get
on the desktop but the networks connecting
them to your service are naturally slower. As
a result, your Web site or native app ends up
fighting performance on both sides. In these
situations it really pays to be an optimist.

While there’s a lot you can do to actually speed things
up -like improving server response times and using inline
CSS for above the fold content- you can only go so far.
Eventually you’ll bump into the realities of mobile
networks. Luckily, though, perception is not reality and
you may be surprised at how much can be done to make
apps “feel” faster when they actually aren’t.

Mobile Design Details

Performing Actions
Optimistically

20

http://www.lukew.com/ff/entry.asp?1749
http://www.lukew.com/ff/entry.asp?1749
http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1756
http://www.lukew.com/ff/entry.asp?1732
http://www.lukew.com/ff/entry.asp?1732
http://www.lukew.com/ff/entry.asp?1732
http://www.lukew.com/ff/entry.asp?1732

For instance, Google’s search app on iOS uses several
animations to make the interface appear more
responsive when results are being loaded. Due to the
immediacy of these transitions, you get the sense that
the app is reacting to your input despite the fact that
nothing has actually loaded yet.

The same principle applies to acknowledging touch
gestures with subtle UI changes. Right when you tap or
swipe, the UI element you just touched changes
appearance or moves to tell you something is
happening. Techniques like this increase the perception
of performance and – alongside actual performance
improvements- they can go a while way toward
creating fast mobile experiences.

Taking this principle further, we can actually create the
illusion that your action has taken effect when in reality
it hasn’t yet. Instagram co-founder Mike Krieger calls
this technique “performing actions optimistically.” As
an example, when you like a photo on Instagram, the
button changes instantly telling you that your action is
complete.

21

Video: Google’s Search App

Video: Instagram’s Instant Action

http://www.lukew.com/ff/entry.asp?1458
http://www.lukew.com/ff/entry.asp?1458

The reality is that a network connection is being
made to tell a server what you did. But Instagram’s
user interface doesn’t wait for the server to verify this
actually happened. They optimistically assume it
happened. If something goes wrong later, they deal
with it then rather than incurring a delay up front.
Commenting works the same way too.

We’ve employed similar techniques in our native
mobile app, Polar but gone one step further and
assumed any new polls you create will make it to our
server. So right when you create a new poll on Polar
it shows up in your feed. In truth, we’ve created a
temporary local copy of the poll and added it to the
front of the list.

This temporary version of your poll is fully functional.
That is you can vote and comment on it and we’ll
make sure your actions get applied to the actual poll
once it is live. To ensure the poll does go live, we hold
on to it locally and try to resend it several times
before ultimately telling you something went wrong.
Occasionally, an upload will make it to our servers
but the mobile device won’t tell us its done so we
have an additional process that checks every few
minutes to make sure no images get stuck.

22

Video: Temporary Version of Poll

If making temporary versions of polls fully functional
and using multiple background processes to make sure
uploads are successful sounds like a lot of extra effort
to make things feel fast – it is. But the end result is
worth it, when people create something on Polar it
seems instantaneous. And in this case, perception
beats reality.

23

Designing for mobile makes a lot of people
nostalgic for the big screens connected to
laptop and desktop computers. These large
canvases easily allowed an organization’s
brand to come to life with big visuals and
rich media. In contrast, the slow networks
and small screens on mobile devices seem
to leave little room for effective brand
treatments. In truth they do... but in
different ways.

For example, Hotel Tonight includes a unique splash
screen with each update of their mobile application.
These variations make each release distinct and add
some new life to the Hotel Tonight experience.

Mobile Design Details

Make Each Release Unique

24

Similarly, we make each update of Polar unique
with a continually changing interactive component.
Each release of our mobile application features a
new “hidden” character behind a pull to refresh
gesture. When you pull down on a list of questions
on Polar, you gradually reveal a polar bear caught in
the act: snorkeling for fish, breaking out, or just
hanging around.

Every Polar update has a new bear that comes
along with it and our users love to track him down.
In fact, they make polls comparing the bears and
discuss which one is their absolute favorite. Our aim
is to make collecting and sharing opinions fun and
we like to reinforce that wherever possible – even in
a simple pull to refresh interaction.

25

Without clear affordances, touch-based
interactions are invisible to the human eye - we
don't know what's possible. To address this,
many mobile applications add introductory
“tours” that walk you through how to do things
using touch gestures. It’s a worthy goal but
perhaps not the best way to reach it.

Most people (sometimes over 90%) skip over intro tours as
quickly as possible and those that don’t rarely remember
what they were supposed to learn. Both these issues stem
from that fact that introductory tours show up before you
ever get a chance to use an application. Most people are
eager to jump right in and as a result, they skip reading the
manual. The ones that do read haven’t seen the interface
yet so they don’t have any sense of where and how the tips
they’re learning will apply.

Mobile Design Details

Just In Time Education

26

Some mobile apps aim to get around this by
overlaying their tour on top of the actual interface
design but even with a picture of the interface present,
people lack the experience to know which actions will
be useful to them and when. And over time they’re
likely to forget which interactions are possible in any
given app as they switch between them regularly.

So instead of trying to teach everything up front and
all at once, teach in the moment when specific
information is actually useful. Author Josh Clark has
called this approach “just in time education” and it’s an
effective alternative to intro tours. We've made use of
it frequently in our mobile app, Polar.

27

After you’ve scrolled through and voted on a few polls
on Polar, pulling up to load more at the bottom of the
screen brings up a tip explaining how to skip polls
you’re not interested in (video demo). This message
only comes up after you’ve had a chance to use the
application for a bit. At that point you’re familiar with
the basic interactions and likely ready to learn about a
more “advanced” interaction.

Because being able to swipe across a poll is a hidden
gesture, we use just in time education to reveal and
explain it to you. While everyone sees this tip the first
time they use the application, we can also surface it
again if we notice people are not using the feature to
help remind them of what’s possible. The trick to
getting just in time education right is revealing useful
information when people actually need it not when
they don’t.

28

http://www.lukew.com/ff/entry.asp?1734
http://www.lukew.com/ff/entry.asp?1734
http://www.lukew.com/ff/entry.asp?1734
http://www.lukew.com/ff/entry.asp?1734
http://www.lukew.com/ff/entry.asp?1734
http://www.lukew.com/ff/entry.asp?1734

Conventional wisdom tells us that when things
are going to take a while, we should let people
know. In most mobile applications that
translates to adding progress bars or spinners
when something is happening or loading.
While the intentions behind these progress
indicators are good, the end result can actually
turn out to be bad.

It can be bad because progress indicators by definition call
attention to the fact that someone needs to wait. It’s like
watching the clock tick down – when you do, time seems
to go slower. We learned this lesson the hard way on Polar
when we experimented with using Web Views to load
parts of our native application’s interface. Web Views are
like little embedded Web browsers that can fetch pages
from a server and present them within an app but only
after they are loaded.

Mobile Design Details

Avoid The Spinner

29

To let people know these elements were
downloading, we added a spinner that showed up as
each Web View was retrieved from our server. Since
we used several Web Views, people could encounter
these spinners in a few parts of the app and when
they did we started to get feedback like this:

“There seems to be an excessive
amount of waiting around for pages
to refresh and load – it doesn't seem
as quick as the previous version.”

With the introduction of these progress indicators,
we had made people watch the clock. As a result,
time went slower and so did our app. We focused on
the indicator and not the progress, that is making it
clear you are advancing toward your goal not just
waiting around.

For example, in Google’s Search application the
Web page you are loading slides in from the side,
making it feel like content is loading immediately
even when it isn’t. Google puts the focus on
progress by making the loading indicator part of the
transition that brings up the page you requested.

30

Video: Google’s Search App

Skeleton screens are another way to focus on progress
instead of wait times. We used this technique in several
places on Polar to effectively eliminate our spinners. A
skeleton screen is essentially a blank version of a page
into which information is gradually loaded. This creates
the sense that things are happening immediately as
information is incrementally displayed on the screen.

With a skeleton screen, the focus is on content being
loaded not the fact that its loading and that’s real
progress.

31

Outside of Hollywood blockbusters, getting in
the way of a speeding freight train usually
doesn’t end well. It takes a lot of effort to shift
the course of something with that much
momentum. So instead of trying, just hop on
board.

Believe it or not, this little lesson applies to mobile app
design as well. Rather than forcing people to divert their
attention from their primary task, come to where they are.

Let me illustrate with an example from our app, Polar. Polar
is a fun way to collect and share opinions by making and
voting on lots of photo polls. This is our freight train. We
get over 40 votes per user on any given day. It’s where
people spend the most time in the app and get immersed
in the Polar experience.

Mobile Design Details

Don’t Divert The Train

32

We knew this experience could be even
better if the list contained polls from people
you know. So we added a prominent action
in the header that allowed you to find your
friends on Polar when you tapped it.

But very few people did. As it turned out,
we were trying to divert the train by
requiring people to go to a different part of
the application to do things like find and
invite friends.

So we decided to use the forward
momentum of our “train” instead of fighting
it. Now when someone is voting, voting,
voting... the 20th poll we show them asks
“Would you like to find your friends on
Polar?” If they say yes, we connect them to
their Address Book, Facebook, and so on.

33

When we made this change, use of the Find
Friends feature shot up dramatically. Since then,
we’ve redesigned a number of other features this
way including setting preferences, requests to rate
the app, and more. Treating these actions as part
of the main activity of our app, in our case voting
on polls, instead of as separate interface elements
made a huge difference in their use.

34

Like many other companies building mobile
applications, we’ve spent a lot of time recently
redesigning our iPhone app, Polar, for Apple’s
newest operating system. Through what turned
out to be a rather lengthy process, we learned a
lot about the good, the bad, and even the
blurry parts of designing for iOS7.

As we began adapting existing elements of the Polar design
to work with the overall aesthetic and design language of
iOS7, one thing became really clear. We weren’t satisfied to
just make things fit into iOS7, we wanted to ensure we
were actually making the design better as a result of these
changes. In some ways, iOS7 made it easy to improve our
design. In other ways it made things a lot harder – which is
where most of our time was spent.

Mobile Design Details

Designing for iOS7:
Perils & Pluses

35

https://twitter.com/lukew/status/381335221289103360
https://twitter.com/lukew/status/381335221289103360

iOS7 Design Pluses 
The design language of iOS7 is inherently simpler than
the one Apple used in iOS6. On the surface, that would
seem to make designing for it simpler as well. But in
reality you end up needing to do more with less, which
is not easy.

 
"True simplicity is, well, you just keep
on going and going until you get to the
point where you go... Yeah, well, of
course."  
 -Jonathan Ive

 
While we needed to use Ive’s process of continual
iteration for several of our design elements (details
later), the work done by Apple’s team also allowed us
to quickly get to a better design with other elements.
For instance, moving to the iOS7 style of input fields
instantly made our forms feel simpler and fit in well
with the rest of the operating system aesthetic.

Headers, while requiring more work, also improved our
existing design by forcing us to get down to the bare
essentials. They also gave us an opportunity to take
advantage of the translucency effects that define a lot
of the iOS7 experience. By default, app headers are
now transparent and can match up with the color of
the OS system bar. This creates a single visual element
at the top of an application and teases content below
the header with transparency – both pluses. But these
pluses also come with some new challenges.

36

 
In order to create more screen space for content, Polar
has always removed our headers when people scroll
down through the list of polls. when they scroll up a
certain amount, we bring the headers back so people
can navigate around the app again. As you can see in
the video below, the default transparency broke this
behavior and we had to come up with a new solution.

We ended up sliding the header under a thin blue
underlay we positioned below the system bar (see the
video above for the full effect). When scrolling down
with this implementation, just a thin blue system bar is
left thereby maximizing screen space and retaining a
bit of the app’s style after the header is gone. but we
weren’t out of the woods yet... because of our custom
pull to refresh elements.

37

Video: Polar iOS 7 Headers

Since the first version of Polar, we included a pull to
refresh gesture that updated the content on our
screens. With our new transparent iOS7 headers, these
perviously hidden (below the header) UI elements
showed through and made the text in our headers
harder to read. We got around this issue with blur.

To ensure our pull to refresh elements below the
header didn’t make things harder to parse, we blurred
all the elements below the header. This created a
sense of depth through translucency without
negatively impacting readability. So win/win.

When it came to the forms and headers in Polar, the
iOS7 design language made it easy to do the right
thing. And I think we did end up with a better design

instead of just an iOS7 design. With other elements of
Polar, things weren’t that easy.

iOS7 Design Perils  
The simplicity of iOS7’s design language comes at a
cost: a reduction in the amount of visual elements
designers can use to create hierarchy and thereby
understanding.

To explain that a bit further, how people makes sense
of what they see gives designers a set of attributes to
play with to create meaning within a design. Elements
like color, size, and texture can create similarity,
differences, and hierarchy within a layout. When these
elements are “flattened”, some of this vocabulary goes
away. It’s like losing a set of words, you have to work
harder to communicate with a more limited
vocabulary.

You can see a lot of places in iOS7 where the flat
design style makes the hierarchy of actions less clear.
For instance, compare Twitter’s compose screen on
iOS6 to the one on iOS7, the lack of strong contrast
between elements makes it less immediately apparent
where the primary call to action (Tweet) is located.

38

http://www.lukew.com/ff/entry.asp?1643
http://www.lukew.com/ff/entry.asp?1643
http://www.lukew.com/ff/entry.asp?1643
http://www.lukew.com/ff/entry.asp?1643
http://www.lukew.com/ff/entry.asp?1643
http://www.lukew.com/ff/entry.asp?1643
http://www.lukew.com/ff/entry.asp?981
http://www.lukew.com/ff/entry.asp?981
http://www.lukew.com/ff/entry.asp?981
http://www.lukew.com/ff/entry.asp?981
http://www.lukew.com/ff/entry.asp?981
http://www.lukew.com/ff/entry.asp?981

In parts of iOS7 it can be hard to determine what the
primary call to action is because it is only distinguished
through subtle visual relationship differences. For
example, in the Terms and Conditions screen every
iOS7 user sees, Agree is just a bit bigger and just a bit
bolder than other elements on the screen despite
being the primary action.

Of course, it’s still possible to create effective visual
hierarchies with less contrast between visual elements
but it’s often harder to do so. Which bring us back to
Jony Ive’s quote at the start of this article: it’s all about
iteration.

In some of our earliest explorations of an iOS7 design,
flattening things out resulted in less hierarchy than we
felt was needed to make actions distinct. You can see

39

this situation in the example below. The Add, Search,
and Create actions all seem to blend together as we’re
relying on small visual changes to distinguish these
actions.

We faced the same challenge in our list of polls. In our
iOS6 design, we had relied on depth (shadows) and
texture to separate items in the list from each other.
When we adapted to an iOS7 design, simplify
flattening these elements once again created hierarchy
issues. A number of of visual elements blended
together too much making it hard to distinguish
individual polls in the list.

40

It was only after we started to remove visual elements
from the poll list that the flatter, simpler look began to
work well. We took out the elements that had been
background textures, eliminated icons, and introduced
a bit of color to separate out actions like Comment
and Share.

Removing texture and depth forced the rest of the
visual design to work harder to create meaningful
distinctions between the various elements on screen. I
think this is a key reason why designing for iOS7 is
harder. It forces you to simplify in order to provide the
same clear visual communication using less visual
relationships.

Another area that required significant iteration was
our Tab Bar. Thanks to Thanh’s amazing icon work, our
Tab Bar not only provided quick access to key features
inPolar but strongly reflected our personality as well.
When we simply tried to adopt iOS7 styled outlines
for our icons, two things went wrong.

41

https://twitter.com/swissgrid
https://twitter.com/swissgrid

First, it made the icons harder to parse quickly.
Aubrey Johnson recently pointed out hollow icons
take more effort to process and we ran a series of
polls that seemed to prove out his hypothesis.

But even without these theories and data, it was clear
the Tab Bar icons were communicating less effectively.
Secondly, we lost a lot of our personality. So it was
back to iterating until again we found a Tab Bar
design that retained our personality and felt at home
on iOS7.

The balance of your application’s personality and the
personality of iOS7 is a great reason to not simply
change over to an “iOS7 design”. Take the visual
vocabulary iOS7 provides as a language but find your
own voice.

We also encountered an over-abundance of “flatness”
in another one of the key screens on Polar: create a
poll. When we first adapted this screen to an iOS7
style, we lost the priority of actions that we counted
on depth and texture to establish in our iOS6 design.

42

https://medium.com/design-ux/a93647e5a44b
https://medium.com/design-ux/a93647e5a44b
https://medium.com/design-ux/a93647e5a44b
https://medium.com/design-ux/a93647e5a44b

To create a clearer hierarchy of what to do first when
creating a poll, I suggested blurring out the
secondary elements and putting the focus on the
things people need to do first. This was an attempt to
use the translucency and blurring effects found in
other parts of iOS7 to add some much needed
hierarchy to a critical screen design.

Ultimately, we backed away from this approach
based on usability concerns and the time it would
take to fully explore and build. But we’re still iterating,
so this and few more iOS7-designed elements might
make it into Polar soon. Install the app to see how our
current iOS6 design morphs over to iOS7 in the
coming days. We've certainly enjoyed the journey
and think you will too.

43

https://twitter.com/lukew/status/381127279905996801
https://twitter.com/lukew/status/381127279905996801

Cross Device Design
for the Web

It’s often said that the power of the Web lies
in the links that enable connections between
people, places, and things. At first glance,
those same links don’t seem to work with
native mobile applications. But mobile Web
and app experiences can be connected – it
just takes a bit more work.

 
“Links don’t open apps.”  
 -Jason Grigsby

 
While Jason’s right... a standard Web link won’t open a
native mobile application on its own, we can set up a
system that allows people to go from the mobile Web to

Cross Device Design for the Web

Linking Mobile Web &
Native App Experiences

45

http://blog.cloudfour.com/links-do-not-open-apps/
http://blog.cloudfour.com/links-do-not-open-apps/
http://blog.cloudfour.com/links-do-not-open-apps/
http://blog.cloudfour.com/links-do-not-open-apps/

a mobile app fairly easily. Here’s how we did it for our
latest iOS app, Polar.

Every poll created in the native Polar iOS application is
also accessible on the Web. We created a mobile first
responsive Web design that allows people to view and
vote on polls using the Web browser and device of
their choice. This means anyone who doesn’t have our
native mobile app can still vote and share their opinion
quickly and easily.

However, if someone has already downloaded our iOS
application we take steps to get them into the app
where they’re more likely to be logged in and can have
the full Polar experience.

A Custom URL 
To start, we set up a custom URL scheme for Polar
that allows us to launch the app from a Web browser
(or any other app on iOS). This link takes the form of
polar://polls/2246/.

While this custom URL scheme allows us to open an
iOS app to any screen we like from the Web browser,
it doesn’t work on all mobile platforms and actually
throws ugly errors on iOS when an app is not installed.

So we can’t simply replace standard links with custom
URLs -even on the platform where our native mobile
app resides. We need to know if someone has our
application installed and only redirect them to it then.

We also can’t check to see if someone has our app
installed. Imagine if any Web site could figure out
exactly which apps you’ve got on your phone -not
good from a privacy perspective. So no operating
systems allow it.

Setting Cookies 
Instead we have to determine if you have our app
ourselves. We do that on the Web through cookies.
When someone signs up for Polar, we have them
confirm the email address they used to sign up for the

46

https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW50
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW50
http://iosdevelopertips.com/cocoa/launching-your-own-application-via-a-custom-url-scheme.html
http://iosdevelopertips.com/cocoa/launching-your-own-application-via-a-custom-url-scheme.html
http://iosdevelopertips.com/cocoa/launching-your-own-application-via-a-custom-url-scheme.html
http://iosdevelopertips.com/cocoa/launching-your-own-application-via-a-custom-url-scheme.html
http://stackoverflow.com/questions/1108693/is-it-possible-to-register-a-httpdomain-based-url-scheme-for-iphone-apps-like/1109200#1109200
http://stackoverflow.com/questions/1108693/is-it-possible-to-register-a-httpdomain-based-url-scheme-for-iphone-apps-like/1109200#1109200
http://stackoverflow.com/questions/1108693/is-it-possible-to-register-a-httpdomain-based-url-scheme-for-iphone-apps-like/1109200#1109200
http://stackoverflow.com/questions/1108693/is-it-possible-to-register-a-httpdomain-based-url-scheme-for-iphone-apps-like/1109200#1109200

site. To do this, we send an email with a confirmation
link that opens in a Web browser and tells us they are
in possession of the email address they provided.
Along the way we also set a cookie in that browser
that tells us this person has installed our app.

Since not everyone that downloads Polar will confirm
their email address and many people are likely to use
more than one browser and device to respond to
email, we can’t only rely on setting the cookie during

email confirmation. We also have to allow people to
tell us when they have the app. For that we include an
OPEN link on poll pages when they are viewed on iOS.
Tapping this link, not only opens the poll someone is
viewing in our native application (using our custom
URL scheme), but also sets their cookie to tell us this
person has our app installed.

47

Redirecting to Native 
Because we set a cookie under these two conditions,
we can now check for the presence of that cookie when
someone opens a Polar link in their Web browser on
iOS. If our cookie tells us that they have the app, we’ll
redirect them automatically to our native application
using our custom URL scheme.

This technique also works for embedded Web browsers
inside of other native applications, albeit a little
differently. For example, if someone encounters a Polar

poll in the native Twitter application on iOS and views
the link in Twitter's embedded Web browser, they’ll also
be redirected to our app. In order to not switch people
between apps without warning, the embedded Web
browser uses a simple confirmation dialog to let people
choose to open Polar or not. (I wish Apple made this
message a bit clearer.)

Like many solutions on the Web, this technique isn't
foolproof. We might end up with an inaccurate cookie
because someone deletes the app from their phone or
taps OPEN on accident. In this case, they'll be
presented with the cryptic iOS error we saw earlier,
need to scratch their head, and then dismiss it. (Again it
would be great if Apple provided something a bit more
informative in the error message.)

Android  
Does this approach also work with Android apps? Yes.
We did something similar on Bagcheck to open
barcode scanning apps on iOS and on Android.

Making links open apps on Android doesn't require
cookies, you can use intent filters to intercept a link and
open an Android app from the browser.

48

http://stackoverflow.com/questions/1108693/is-it-possible-to-register-a-httpdomain-based-url-scheme-for-iphone-apps-like/1109200#1109200
http://stackoverflow.com/questions/1108693/is-it-possible-to-register-a-httpdomain-based-url-scheme-for-iphone-apps-like/1109200#1109200
https://github.com/zxing/zxing/wiki/Scanning-From-Web-Pages
https://github.com/zxing/zxing/wiki/Scanning-From-Web-Pages
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://stackoverflow.com/questions/1609573/intercepting-links-from-the-browser-to-open-my-android-app
http://stackoverflow.com/questions/1609573/intercepting-links-from-the-browser-to-open-my-android-app

Smart Banners 
Why not use Apple's Smart Banners to open iOS apps
instead? Smart banners have some advantages over
our method. They actually know if an app can be
installed or is installed (but won't tell us) and can adjust
the action within the banner or hide the banner
accordingly.

But smart banners only show up on iOS6, so we can't
reach all the iOS devices we'd like nor reach people on
desktops and laptops with iTunes. We also can't adjust
the size or contents of smart banners ourselves. If your
primary goal is getting people to install or open your
native app, that might be fine. Our primary goal is
allowing people to vote on a poll and Apple's banners
get in the way. Despite these issues, smart banners
might be a real good solution in other situations.

49

Video: Polar Multi-Device

Most Web page layouts rely on design patterns
created for laptop and desktop computers
equipped with a mouse and keyboard. As the
variety of devices being used to access the Web
has grown, these patterns haven’t been keeping
up. Designing for today’s Web means considering
single-handed thumb use on smartphones, two
handed touch interactions on tablets, mouse and
keyboard input on traditional PCs, hybrid
devices, and more. Web layouts have to evolve to
support this new reality.

The New Reality 
As device diversity increases, so does the number of ways
people interact with the Web. To understand the impact of a

Cross Device Design for the Web

New Layouts for the
Multi-Device Web

50

http://www.lukew.com/ff/entry.asp?1646
http://www.lukew.com/ff/entry.asp?1646

specific device on interaction design and layout, we can
look at three things: output as mostly defined by a
screen, the input types available, and common postures
or modes of use (strongly influenced by input and
output capabilities). For example, consider the modern
smartphone.

Todays’ smartphones are defined by palm-sized screens
(usually 3-5 inches diagonally) of varying pixel density,
multi-touch input, and predominately one-thumb use
with the device about a half arm’s length away. A recent
study of 1,333 people using smartphones on the street
found that about 75% of smartphone use is one thumb.
Web layouts need to take this reality into account.

Tablets also feature multi-touch input but they have
larger lap-sized screens (7-10 inches diagonally) that
have an impact on how they get used. With a larger
screen one-handed use is less comfortable so two-
handed use is more common. With two-handed touch
interactions, the sides of the screen are the easiest to
access with simple finger gestures. As tablets continue
to grow, Web layouts also need to take this reality into
account.

Hybrid devices that feature touch, mouse, and keyboard
input are increasingly common as well. On these
devices, touch interactions are more frequently used
than most people assume. A study by Intel found 77%

51

http://www.lukew.com/ff/entry.asp?1485
http://www.lukew.com/ff/entry.asp?1485
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php?
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php?
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php?
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php?
http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1692
http://www.lukew.com/ff/entry.asp?1692
http://www.lukew.com/ff/entry.asp?1692
http://www.lukew.com/ff/entry.asp?1692
http://software.intel.com/en-us/articles/the-human-touch-building-ultrabook-applications-in-a-post-pc-age/
http://software.intel.com/en-us/articles/the-human-touch-building-ultrabook-applications-in-a-post-pc-age/

of interactions on these devices used the touch screen,
12% used the mouse, and 8% used the keyboard. Once
again the size of the screen and people’s posture
influences interaction design and layout. To avoid the
fatigue that comes from holding your arm up in the air,
people rest their arms or elbows on a surface and once
again rely on the sides of the screen for touch input.

Alongside these diverse devices, we still have lots of
laptops and desktops with traditional mouse and
keyboard inputs and design considerations.

So how do Web layouts adapt to this new increasingly
diverse reality? Here’s one attempt we just launched for
Polar.

Multi Screen & Multi Input Design  
Topic pages on Polar were designed to adapt to not
only different screen sizes but to different input types
as well. The end result is a Web interface that aims to fit
into the reality of Web use today. In particular, the
human ergonomics of how people interact with
different devices: one-thumb use on smartphones; two-
handed use along the sides on tablets; and mouse
scrolling, clicking, and keyboard shortcuts wherever
they make sense.

On a smartphone, Polar topic pages focus on one-
thumb use through large touch targets and a single
scrolling column of content. We also aimed to minimize
mobile download times by only loading more content
when people ask for it. On other devices, we
automatically load more content as you scroll.

52

http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1664

On larger smartphone screens and small tablets (call
them phablets if you must), we increase the size of the
content and maintain an emphasis on touch input.
However, we also include keyboard support for voting
as well. But we’re not promoting it... not yet.

On tablet-sized screens, we introduce a browsing
column on the left side of the screen for quickly
exploring content and move the content column to the

right side. This is an attempt to accommodate two-
handed use of tablets where people’s hands sit
comfortably on the sides of the device.

This arrangement carries over into landscape tablet
views and the larger screens you’re more likely to find
on laptop and hybrid devices. Once we cross a screen
size more likely to be present on a laptop, we
introduce an affordance that let’s people know they
can use their keyboard to vote as well. The up, down,
left, and right arrow keys allow you to move through
the content list and take action.

53

Our initial goal was to provide a more significant
promotion for keyboard voting if we detected a
keyboard was present on a device. After going down
this path for a while, however, we found no reliable way
to detect if a keyboard was attached. So instead we
downplayed the keyboard promotion and made it
visible to everyone that fit within a screen size
threshold. Using screen size as a proxy for keyboard
presence is not ideal but sadly its all we have to work
with today.

On very large screens, we actually do promote
keyboard voting more aggressively. Even if touch is
available on a desktop-sized screen, chances are the
screen is a decent distance away from the viewer,
whereas as the keyboard is right next to them, and
thereby more comfortable to use. As a result, we feel
more confident promoting the keyboard voting feature.

54

Comfortable to Use  
Across all these devices from smartphone to desktop,
our criteria for the Polar interface was “comfortable to
use”. That is we emphasized human ergonomics over
typical visual design conventions. We wanted a design
that was comfortable for phone, phablet, tablet, hybrid,
laptop, and desktop users and adapted the interface as
needed to align with how people use these distinct
devices.

The potential downside of this approach is that
“comfortable to use” doesn’t come through unless you
are actually using the application. Looking at the Polar
interfaceon a laptop can be a bit disconcerting because
we’ve essentially left the middle of the page “blank”.
Just about every other Web page online centers their
page layout and leaves the sides as empty columns.

But is this a desktop convention that needs to change?
Are we better off adapting our interfaces to the way
people actually use devices instead of clinging to “best
practices” defined nearly twenty years ago? And just
what is the difference between tablets and laptops in a
world of hybrid devices? Time will tell. In the meantime
we’ll keep experimenting on these devices and many
more...

55

http://www.lukew.com/ff/entry.asp?1720
http://www.lukew.com/ff/entry.asp?1720
http://www.lukew.com/ff/entry.asp?1720
http://www.lukew.com/ff/entry.asp?1720

Lately I've become increasingly interested in
the ergonomics of software design. That is,
how human factors influence both the
interactions and layout of an interface. In New
Layouts for the Multi-Device Web I outlined
the impact touch interfaces can have on layout
across diverse screen sizes. This time I want to
focus on interaction and designing for the flow
of a thumb.

The Ergonomics of Software 
Traditional graphical user interfaces (GUIs) are controlled
by indirect manipulation through a mouse, keyboard, or
joystick. So we design software for GUIs to work with
digital representations of our movements by relying on
interactions and layouts that accommodate mouse cursors
not hands.

Cross Device Design for the Web

Designing for Thumb Flow

56

 Video: Thumb Flow

Human factors do play a role in GUI design as we need
to consider a user's distance from the screen, the range
of motion they can get from a mouse, proximity of
keyboard actions, and occasionally environmental
conditions like lightning. But the importance of
ergonomics increases dramatically when indirect
manipulation gives way to direct manipulation.

Interfaces that support direct manipulation through
multi-touch, gestures, and voice are different. These
natural user interfaces (NUIs) make direct use of our
hands, fingers, and bodies. So human factors have a
much more direct impact on software interactions and
layout.

When you add in the diversity of device sizes out there
today and their impact on user posture and its not
surprising that a company like Netflix refers to their
software experiences in terms of human ergonomics:
10 foot user interface guy (for TVs), two foot guy
(laptops) and 18 inch guy (tablets).

In a world of diverse devices and direct manipulation,
human scale matters. And human scale on mobile
devices is increasingly measured in thumbs.

Thumb Flow  
In a study looking at over a thousand people using
mobile devices in the street, Steven Hoober found that
about 75% of people’s interactions with a smartphone
were managed with a thumb. Whether holding the
device with one or two hands, it was the thumb that
was doing all the work.

So when it comes to designing for mobile, it makes
sense to follow the thumb. Let me illustrate with an
example from our mobile application, Polar, which was
designed and tested for one-thumb use. Polar is a fun
way to collect and share opinions so we wanted to
make that process as fast and easy as possible -
especially with one thumb. You can how we went about
it in the video below.

Dragging your thumb up on the screen reveals new
questions you can vote on. Tapping on either side of a
question with your thumb allows you to respond. Once
you get to the end of a list, just pull up on the screen
with your thumb again to reveal more questions.

The first time time you do this, a tip slides up from the
bottom letting you know that questions you might not

57

http://www.lukew.com/ff/entry.asp?1023
http://www.lukew.com/ff/entry.asp?1023
http://www.businessweek.com/articles/2013-05-09/netflix-reed-hastings-survive-missteps-to-join-silicon-valleys-elite#p5
http://www.businessweek.com/articles/2013-05-09/netflix-reed-hastings-survive-missteps-to-join-silicon-valleys-elite#p5
http://www.businessweek.com/articles/2013-05-09/netflix-reed-hastings-survive-missteps-to-join-silicon-valleys-elite#p5
http://www.businessweek.com/articles/2013-05-09/netflix-reed-hastings-survive-missteps-to-join-silicon-valleys-elite#p5
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php?
http://www.uxmatters.com/mt/archives/2013/02/how-do-users-really-hold-mobile-devices.php?
http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1664

be interested in can be skipped by swiping across them
with another simple thumb gesture. It’s important to
note that we’re showing this tip to you only after you’ve
scrolled and voted on a few things –not before you ever
use the application.

Now that you’ve made it down the list a ways, you
might want to explore other parts of the application. To
do so just drag your thumb down on the screen. Once
you scroll the list a bit, we slide the main navigation
menu down for quick access sparing you the need to
keep scrolling in order to reach it.

Want to refresh the list to see the latest questions being
asked? Just pull down on the list to reload it. Looking at
all these interactions together, you can see just how
much you can get done with one thumb:

1. Swipe up to move down the list

2. Tap on either side of a question to vote

3. Swipe up to load more

4. Swipe down slightly to reveal the main menu

5. Swipe down more to refresh the list

6. Swipe across to skip questions

Making all this possible requires comfortably sized
controls and a lot of one-handed testing. But in return,
people will be able to easily use your application
anywhere and everywhere they are – all they need is
their thumb.

58

http://www.lukew.com/ff/entry.asp?1664
http://www.lukew.com/ff/entry.asp?1664

These days, the Web is always with us.
Thanks to an ever-increasing number of
always-on devices with great browsers, the
Web is a constant companion in our lives.
This continuous connectivity allows us to
build new experiences that rethink how the
Web can work -not just on one device but
across many. To explore these possibilities we
teamed up with Microsoft to create a
Companion Web experience for Polar.

The Companion Web 
From hyperlinks to social networks, the Web has always
been about making connections between information,
people, and now... devices. Whether tablets,

Cross Device Design for the Web

Designing a Companion Web Experience

59

Video: Polar Meets The Companion Web

http://www.lukew.com/ff/entry.asp?1728
http://www.lukew.com/ff/entry.asp?1728
http://thecompanionweb.com/
http://thecompanionweb.com/

smartphones, or TVs, today’s networked devices ship
with the best Web browsers we’ve ever had to work
with: Internet Explorer 10, Chrome for Android, and
Safari for iOS for starters. The combination of better
browsers, new devices, and how they’re used allows us
to rethink what the Web can be – to create new
experiences for this new reality.

Consider more than 80% of smartphone owners in the
United States use their device while watching TV and
even back in 2011, 20% of time spent on a smartphone
was in front of a television. Despite people’s frequent
simultaneous use of these screens, they’ve remained
separated by different operating systems, input
devices, and apps. So while the amount of connected
devices in our lives has grown, their connections to
each other have not kept pace.

The Web can help by connecting our screens and
applications so we can build cohesive experiences that
take advantage of what each device in our lives does
best. These Companion experiences represent the next
evolution of the Web and we’re excited to be working
with the Internet Explorer team at Microsoft to explore
this new terrain for Polar.

The Polar Companion Experience  
Polar allows you to easily share your opinion on any
topic from iOS7 icon design to summer foods. We built
a Web experience that not only looks good on
different sized screens (smartphones, tablets, laptops,
etc.) but also works great with different kinds of input
(touch, mouse, keyboard) as well. So you can use Polar
on the Web wherever and however you like.

But where and how people use the Web keeps
changing and increasingly involves more than just one
device. So our new Companion Web experience for
Polar isn’t just designed to be accessed on a wide
range of devices, it’s designed to work simultaneously
across these devices as well.

60

Video: Polar Companion Experience

http://www.lukew.com/ff/entry.asp?1624
http://www.lukew.com/ff/entry.asp?1624
http://www.lukew.com/ff/entry.asp?1624
http://www.lukew.com/ff/entry.asp?1624
http://www.lukew.com/ff/entry.asp?1721
http://www.lukew.com/ff/entry.asp?1721
http://www.lukew.com/ff/entry.asp?1721
http://www.lukew.com/ff/entry.asp?1721
http://www.lukew.com/ff/entry.asp?1721
http://www.lukew.com/ff/entry.asp?1721

As you can see in the video, the Polar Companion Web
experience complements what you’re watching on the
big screen. You can leave it up alongside any film, TV
show, or video you’re viewing and keep up with new
opinions and questions, as they appear in real-time.

Or use any device with a Web browser to control the
big screen display. When you scroll, vote, or switch
topics with your connected device, the big screen
experience responds to your actions: vote on a poll
and see results from others instantly on the big screen;
start scrolling on your connected device and the big
screen automatically switches to list mode showing
you totals for the polls you’ve already voted on.

We’ve even made it possible to have multiple devices
connected to the screen at once so you can take turns
controlling the big screen experience.

Once you are done voting on a topic, you can switch
the big screen display over to the Results view to see
how your opinions stack up against others who have
voted on the same topics. This display updates in real
time as others continue to vote so you can keep it
alongside whatever you’re viewing to follow along.

61

Because this is the Web, you’re not limited to just one
way of using our Companion Web experience. Turn on
a video on any Windows 8 laptop or tablet and snap
Polar’s companion experience alongside for a single-
device split screen view. Or connect any two Web
browser windows you like whether they are on the
same device, same operating system, or not.

As you can see, the Web is full of possibilities and
Companion Web experiences like Polar allow you to
connect the diverse screens in your life in new ways
that put control in your hands. It’s an exciting time to
be building online and we’re happy to have worked on
it together with the Internet Explorer Team.

You can get more information on the Companion Web
on Microsoft’s site.

62

http://thecompanionweb.com/
http://thecompanionweb.com/

As people continue to go online using an ever
increasing diversity of devices, responsive Web
design has helped teams build amazing sites and
apps that adapt their designs to smartphones,
desktops, and everything in between. But many
of these solutions are relying too much on a
single factor to make important design decisions:
screen size.

What’s Wrong With Screen Size? 
It's not that adapting an interface to different screen sizes is
a bad thing. Quite the opposite. It’s so important that key
metrics like conversion and engagement usually increase
substantially when Web sites adjust themselves to fit
comfortably within available screen space. For proof, just

Cross Device Design for the Web

Responsive Web:
Relying Too Much on
Screen Size

63

http://www.lukew.com/ff/entry.asp?1691
http://www.lukew.com/ff/entry.asp?1691
http://www.lukew.com/ff/entry.asp?1691
http://www.lukew.com/ff/entry.asp?1691

look at how mobile conversion rates increase
significantly more in responsive redesigns than PC
conversions do.

So if adapting to different screen sizes can have that
kind of positive impact for a business, what’s the risk?
As the kinds of devices people use to get online
continue to diversify, relying on screen size alone
paints an increasingly incomplete picture of how a
Web experience could/should adapt to meet people’s
needs. Screen size can also lead to bad decision-
making when used as a proxy for determining:

• If a browser is running on a mobile device or not

• If Network connections are good (fast) or bad (slow)

• If a device supports touch, call-making, or other
capabilities  

There’s still no relationship between
screen size and bandwidth. Instead, we
should ensure our work’s as light as
possible *for everyone*.

 – Responsive Design (@RWD)

None of these can actually be accurately inferred from
screen size alone but they are comfortable
assumptions that make managing device diversity
substantially easier. The harsh truth however, is that
output (screen size and resolution) is only one third of
the equation -at best. Equally important to
determining how to adapt an interface are input
capabilities and user posture, which sadly screen size
doesn’t tell us anything about.

Let me illustrate with a few specific examples.

Screen Size Limits  
On tablets, PCS, and TVs, Microsoft’s Windows 8
platform allows any app, including the Web browser,
to be “snapped” to the side of a screen thereby letting
people interact with it while using another application
in the primary view. As an example, the Windows 8
calendar application can be snapped alongside the
weather app when making your daily plans.

64

http://www.lukew.com/ff/entry.asp?1691
http://www.lukew.com/ff/entry.asp?1691
http://www.lukew.com/ff/entry.asp?1691
http://www.lukew.com/ff/entry.asp?1691
https://twitter.com/RWD/statuses/394857029627809792
https://twitter.com/RWD/statuses/394857029627809792

Notice though, that the default view of the calendar
application on Windows Phone 8 is quite different than
the snapped view of the same app on a tablet, PC, or
TV. They are both using the same amount of screen
width (in relative pixels), but the mobile interface
starts with a daily agenda instead of a small month
view by default. The controls are also adjusted to the
mobile form factor as you can see in the image below.

We can debate about why these differences exist and
if they should or not but the bottom line is there’s
more than screen size being taken into account in
these application designs.

This simple example illustrates the challenge for Web
designers. On Windows Phone devices, Internet
Explorer uses 320 pixels for its device-width (the
width it renders content at). On Windows 8 tablets,
PCs, and TVs, snap mode uses the same 320 pixel
device-width to lay out Web pages docked alongside
other apps.

65

So with a responsive Web design, people get the same
interface on a smartphone that they get in snap mode
on a TV screen due to the same device-width (320
pixels). You can see this illustrated in the image below.

But should the interface be the same? A TV is usually
viewed from about 10 feet away, while the average
smartphone viewing distance is about 12 inches. This
has an obvious impact on legibility for things like font

and image sizes but it also affects other design
elements like contrast. So a user’s posture (in this case
viewing distance) should be taken into account when
designing for different devices.

The input capabilities of a TV (D-pad) can differ wildly
from a those of a mobile device (touch) or in some
cases be the same (voice). Designing a simple list
interface for d-pads requires a different approach than
a creating a similar listing for use with touch gestures.
So available input types should also be considered in a
multi-device design.

When you take user posture and input capabilities into
account when designing, an interface can change in
big or small ways. For instance, contrast the design
below for Windows 8 snap mode on a TV compared to
a mobile version of the same feature.

66

While the screen size (320 pixel device-width) has
stayed consistent, the interface has not. Larger fonts, a
simplified list view, inverted colors, and a lot more have
changed in order to support a different user posture (10
ft away vs. 12 inches), and different input types (d-pad
vs. touch). As you can see, screen size doesn’t give us a
complete picture of what we need to know to design an
appropriate interface.

Before you dismiss this as an isolated use case on
Windows 8 devices, note that Android smartphones
and tablets also offer the ability to interact with
multiple applications side by side and Android-
powered TVs won’t be far behind. In fact, we’ve already
got Android eyepieces like Google Glass that pose
similar challenges.

Google Glass allows you to view applications and Web
pages using a display that projects information just
above your line of sight. The official specs describe the
Glass display as a “25 inch HD screen viewed from 8
feet away.” So right up front, viewing distance matters.

67

http://www.lukew.com/ff/entry.asp?1745
http://www.lukew.com/ff/entry.asp?1745
http://www.lukew.com/ff/entry.asp?1745
http://www.lukew.com/ff/entry.asp?1745
http://www.samsung.com/us/support/supportOwnersHowToGuidePopup.do?howto_guide_seq=10096&prd_ia_cd=N0000003&map_seq=120424
http://www.samsung.com/us/support/supportOwnersHowToGuidePopup.do?howto_guide_seq=10096&prd_ia_cd=N0000003&map_seq=120424

Like most mobile Web browsers, Glass uses a dynamic
viewport to resize Web pages for its screen. On Glass
the default viewport size is set to 960 pixels and
pages are scaled down accordingly. So if someone is
viewing the Yahoo! Finance site, it displays like this in
the Glass browser (below). Essentially, it is shrunk
down to fit.

The Web browser on Glass also allows pages built
responsively to adapt to a more suitable device-width.
In this case, 640 pixels. So a Web page designed to
work across a wide range of screen sizes would render
differently on Glass. Given that 600 pixels is a
common device-width for 7 inch tablets, the page
you’d see on Glass would look more like the following
-adapted for a smaller viewport size.

68

In addition to the Web browser, Google Glass also
includes a number of “glassware” applications built
with the same Web technologies used to create Web
pages. One of these apps provides access to stock
price changes -very similar to what you see displayed
prominently on the Yahoo! Finance site. However, the
presentation of this information is very different. As
you can see in the image below it’s been designed as if
you are viewing a 25” screen from 8 feet away. This
design is much more suited to a wall-sized display
than a small tablet screen.

This Glassware interface is also designed to make
scrolling through information using the touchpad on
the side of Google Glass (which comfortably supports
sweeping left/right and up/down gestures) fast and
easy.

So again user posture and input capabilities inform
how to design for a specific device. Screen size alone
doesn’t tell us enough.

Supporting Everything  
In order for an interface to adapt appropriately to
different output, input, and user posture, we need to
know what combination of the three we’re are dealing
with at any given time. On the Web that’s been
notoriously difficult. We can’t tell TVs from
smartphones or what devices support touch without
relying on some level of user agent detection, which is
often looked at dubiously.

Because of this, Web developers and designers have
smartly decided to simply embrace all forms of input:
touch, mouse, and keyboard for starters. While this
approach certainly acknowledges the uncertainty of
the Web, I wonder how sustainable it is when voice, 3D
gestures, biometrics, device motion, and more are

69

http://www.lukew.com/ff/entry.asp?1765
http://www.lukew.com/ff/entry.asp?1765
http://www.lukew.com/ff/entry.asp?1765
http://www.lukew.com/ff/entry.asp?1765
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.html5rocks.com/en/mobile/touchandmouse/

factored in. Can we really support all available input
types in a single Web interface?

A similar approach to user posture is increasingly
common. That is, an interface can simply ask people if
they want a lean-back 10 foot experience, a data dense
2 foot experience, or something more suited for small
portable screens. This makes user posture something
that is declared by people rather than inferred by
device. Once again, this kind of “support everything”
thinking embraces the diversity of the Web whole-
heartedly. However it puts the burden on each and
every user to understand different modes, when they
are appropriate, and change things accordingly.
(Personally I feel we should be able to provide an
optimal experience without requiring people to work
for it.)

Ultimately trying to cover all input types and all user
postures in a single interface is a daunting challenge.
It’s hard enough to cover all the screen sizes and
resolutions out there. Couple that with the fact that an
interface that tries to be all things to all devices might
ultimately not do a good job for any situation. So while

I embrace supporting the diversity of the Web as much
as possible, I worry there’s a limit to the practicality of
this approach long-term as the amount of possible
inputs, outputs, and user postures continues to grow.

Don’t Assume Too Much 
These examples are intended to convey one important
point: don’t assume screen adaptation is a complete
answer for multi-device Web design. Responsive Web
design has given us a powerful toolset for managing a
critical part of the multi-device world. But assuming too
much based on screen size can ultimately paint you
into a corner.

It’s not that adapting to screen size doesn’t matter, as I
pointed out numerous times, it really does. But if you
put too much stock in screen size or don’t consider
other factors, you may end up with incomplete or
frankly inappropriate solutions. How people interact
with the Web across screens continues to evolve
rapidly and our multi-device design methods need to
be robust enough to evolve alongside.

70

On today’s multi-device Web, your audience
might be using a mouse, keyboard,
touchscreen, trackpad, or increasingly, more
than one of these input types to interact with
your service. Given all these possibilities, how
do you let people know how they can get
things done in your app?

A common way to provide relevant bits of guidance
inside an application is through inline help. Inline help is
positioned where it’s most useful in an interface and
made visible by default so people don’t have to do
anything to reveal it. This makes it an effective way to
tell people how to use an interface. But what happens
when those instructions vary by input type?

Cross Device Design for the Web

Customizing Help & Tips
By Input Type

71

Video: Pinch and Spread Gestures

http://www.lukew.com/ff/entry.asp?1646
http://www.lukew.com/ff/entry.asp?1646
http://www.uxmatters.com/mt/archives/2007/05/dynamic-help-in-web-forms.php
http://www.uxmatters.com/mt/archives/2007/05/dynamic-help-in-web-forms.php

For instance, we recently built a fully responsive Web
application that can be used on smartphones, tablets,
desktops, and more. In this application, people can
add and manipulate images by zooming, resizing, and
moving these images around. Depending on the input
type their device supports, however, they have
different ways of accomplishing these tasks.

To position an image using touch, you simply drag it
with your finger. Zooming-in and zooming-out is
accomplished through pinch and spread gestures.
Sizing an image to fit happens through a double-tap
action.

These same features are supported on mouse and
keyboard devices as well. To move an image around,
click and hold to drag it. Zooming in and out happens
with the scroll wheel or a multi-touch gesture on the
trackpad. Sizing an image to fit takes a double-click of
the mouse.

As you can see, the touch and mouse actions are
similar but not the same. We were also concerned that
while touch users are quick to pinch and spread when
trying to zoom an image, mouse users are less familiar
with using scroll wheels and two-finger trackpad

gestures to accomplish the same thing. So we wanted
to let our mouse users know what’s possible with a few
simple bits of inline help.

Easy, right? Just check if someone’s device has a
mouse or trackpad attached and reveal the tip. Well,
no.

On an earlier project, we faced a similar situation.
While our smartphone and tablet users could easily

72

Video: Revealing Inline Help

http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.html5rocks.com/en/mobile/touchandmouse/
http://www.lukew.com/ff/entry.asp?1721
http://www.lukew.com/ff/entry.asp?1721

interact with our lists of polls by scrolling and voting
with their thumbs, mouse and keyboard users had more
work cut out for them. They couldn’t simply keep their
fingers in one place and vote, scroll, vote.

So we developed a keyboard interaction that allowed
people to vote with left/right keys and move through
polls with up/down keys. While this made keyboard
users much faster and effective, we again were faced
with a hidden interface: people didn’t know keyboard
voting was possible unless we told them.

That meant we had to detect if a keyboard was present
and surface a simple inline tip that explained the voting
interface. After a few failed attempts at doing this, I
reached out to friends on the Internet Explorer team at
Microsoft. After all, if anyone would have a good handle
on how to manage different input types on the Web, it
would be the company with a Web browser that not
only runs on phones, tablets, laptops, and desktops but
hybrid devices and even game consoles as well.

73

Sadly, we learned there’s not a great way to do this in
Web browsers today and browser makers are hesitant
to reveal information like this in a navigator.hardware
object because of concerns it could be used to
fingerprint users. So instead, we opted to proxy the
presence of a keyboard using screen width. That is, if
the screen is wide we assume there’s a higher chance
of a keyboard being present and show the keyboard
interface tip by default.

This is the same solution we now have in our new
publisher tool. When the screen crosses a certain
width, we reveal two inline tips explaining how to
zoom and fit an image using a mouse.

As I’ve written before, using screen width as a proxy
for available input types is not ideal and increasingly
unreliable in today’s constantly changing device
landscape. But the alternative solutions don’t seem
much better.

For instance, we could provide a help section that
explains how to do things with every input type. But
then we loose the immediacy and effectiveness of
concise inline help. We could wait until someone
interacts with the app to determine if they are a
touch or mouse user, save that information and
display device-appropriate tips from that point on.
But even if we get this info up front it can change as
people switch between touch screens and trackpads
or their mouse.

While the need for input-appropriate help text in a
Web application may seem like a small detail, it’s
reflective of the broader challenge of creating
interfaces that not only work across different screen
sizes but across many different capabilities (like
input type) as well. Inline help is just one of many
components that need be rethought for today’s
multi-device Web.

74

http://www.lukew.com/ff/entry.asp?1816
http://www.lukew.com/ff/entry.asp?1816
http://www.lukew.com/ff/entry.asp?1816
http://www.lukew.com/ff/entry.asp?1816

Thank You

lxxv

The Polar Team: Jeff Cole, Winfield Peterson,
Thanh Tran, and Paula Wirth.

Special Thanks to: Dmitry Dragilev, Ashley Streb,
Chris Butler, Jason Weaver, and everyone who
used Polar. You helped make it so much better
than we ever could on our own.

Thank You

The Polar Team: Jeff Cole, Winfield Peterson,
Thanh Tran, and Paula Wirth.
 
Special Thanks to: Dmitry Dragilev, Ashley Streb,
Chris Butler, Jason Weaver, and everyone who
used Polar. You helped make it so much better
than we ever could on our own.

lxxvi

